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Abstract. We study by Monte Carlo simulations the critical behaviour and the cross-over 
scaling of the true self-avoiding walks (?SAW) on fractal lattices above the upper marginal 
dimension. We estimate the Flory exponent Y which characterizes the RMS end-to-end distances 
of TSAW on a percolation cluster at percolation thresholds bath in three and four dimensions and 
on a DLA cluster in three dimensions.~ Results were in good mgeement with the predictions of the 
known Rory formulae. We also discuss the fractal-toBuclidean and the RW-10-DAW mss-over 
scaling. Monte Carlo data appear to collapse in the scaling regions for both a s ;  however. we 
found that the scaling function for the latter is different from that on the regular~lattices. 

1. Introduction 

Since the development of the model, the true self-avoiding walks (TSAW) have attracted 
considerable interest mainly because they exhibit critical behaviour different from the 
ordinary self-avoiding walks (SAW) [I]. In contrast. the upper marginal dimension, d, of 
SAW is 4 [2], while that of TSAW is known to be 2 [I]. On a d-dimensional lattice, the Flory 
formula for the exponent U, defined by the RMS end-to-end distances (or equivalently radii 
of gyration) of N-step walks via RN o( N " ,  was obtained by a self-consistent approach [3] 
and Flory approximation [4] to be 

2 
d + 2  VISAW = - 

for any d < 2. Thus the only Euclidean dimension in which the TSAW attracts interest is in 
one dimension (ID), where v was found to be !, in agreement with equation (1) [5,6]. 

The TSAW is the kinetic process, in which the probability Pj-; of moving from site j 
to its nearest-neighbour site i depends on the number of previous visits ni on~the site i by 

(2) p,_; = e-m/ e-m 
1 

where the sum in the denominator runs over all sites neighbouring site j and the parameter 
g represents the strength of self-avoidance. The extreme limit g = 0 corresponds to the 
ordiniuy random walks (RW). For any g < 0, the TSAW is self-attractive and the RMS 
end-to-end distances were found to yield an apparent saturation as the number of steps N 
increases [7]. For g P 0, the TSAW tends to avoid the previously visited sites, but it can 
intersect with itself with smaller probabilities. The excluded-volume effect of TSAW in this 
case is known to be different from that of SAW even in the extreme limit of g + W. 
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Although the model of TSAW was designed originally from the theoretical motivation due 
to its unusual critical behaviour, it has later been shown that there exist relevant physical 
phenomena which can be described by this model. For example, the TSAW was found 
to describe the statistics of the typical polymers in a polydispersed solution with a broad 
distribution of chain sizes [4]. 

The TSAW on a regular lattice has attracted no further attention since the critical 
behaviour in physically interesting ?D and 3D is expected to be similar to that of non- 
interacting RW. However, with an increasing interest in fractals [SI, the TSAW on fractals 
has also become an interesting topic in the field of critical phenomena. The first work of 
such problems is that of Angles d'Auriac and Rammal, who studied the TSAW on a Sierpinski 
gasket embedded in 2D [9]. They found that the exponent U of TSAW on a Sierpinski gasket 
was different from that on a regular lattice and, in addition, their estimate was very close 
to the prediction by Flory-type formula [lo], given as 

where d j  and d, are, respectively, the fractal and spectral dimensions of the underlying 
fractal lattice [ 111. 

Recently, one of the present authors canied out extensive Monte Carlo simulations for 
TSAW on various fractal lattices, i.e. on Sierpinski gaskets in both 2D and 3D, on an infinite 
cluster and a backbone of ID percolation [12,13]. He obtained the Flory exponent U for 
such cases to be significantly different from that on a regular lattice. He also found that 
the estimates of U for all cases were in good agreement with the predictions from the Flory 
formulae suggested by Bouchaud and Georges [I41 and by himself [13]. Bouchaud and 
Georges derived the Flory-type formula, based on statistical arguments concerning sums of 
long-range correlated random variables, given as 

BG 22 
d f ( 2  + 22 - d,) 'TSAW = (4) 

where d is the so-called spreading dimension of the underlying fractals [IS]. On the other 
hand, Lee obtained, from the usual Flow approximation assuming the elastic free energy in 
the form Fe, cx (R/R# and choosing x = 2 for shoa-range distributions of step sizes, the 
Flory formula for TSAW as . 

Although the latter formula is simple in form without demanding knowledge of the spreading 
dimension of the underlying lattices, it has been found to describe the critical behaviour of 
TSAW just as well as the former. 

All these works, however, were carried out on fractals of dj < d,, motivated by 
theoretical interest rather than understanding the corresponding physical phenomena. In 
this work, we study TSAW on random fractal lattices of d f  d,. One can readily think of 
such fractals as the infinite networks of percolation and DLA clusters embedded in the lattices 
of dimensions higher than 2. Since percolation clusters are known to describe the disordered 
media and TSAW corresponds to linear chain poIymers in a polydispersed solution, at least 
one of these models may describe the relevant physics under certain circumstances. 

On fractal lattices, Angles d'Auriac and Ra"al[9] have redrawn the heuristic argument 
of Amit et al [ l ]  and claimed that the self-avoidance of TSAW may increase the Flory 
exponent if 

2 - d p / 2  - ~ U R W  > 0 (6) 
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holds. Since URW = ds/2d, [16] and d, rr 4 [ I l l  for percolation cluster, equation (6) 
reduces to df > 1. which is satisfied for all d > 1. Thus the TSAW on a percolation cluster 
is expected to show the critical behaviour different from that of Rw for all d z 1. One 
can therefore raise the relevant question of what the value of U would be for TSAW on a 
percolation cluster in physical dimensions. 

In order to address the answer to this question, we study by way of Monte Carlo 
simulations the TSAW on a 3D percolation cluster. To make our work more general, we 
also study TSAW on a 4D percolation cluster and on a 3D DLA cluster. We found that as 
the lattice dimension increases, the asymptotic behaviour of TSAW becomes unexpectedly 
slow, and accordingly, walks of a large number of steps should be generated to observe 
the correct asymptotic behaviour. We estimate the Flory exponent v from the Monte Carlo 
data for various values of g. Results are compared with the predictions by the known Flory 
formulae. We also study the fractal-to-Euclidean and the RW-to-TSAW cross-over scalings. 
The Monte Carlo data appear to collapse in the appropriate scaling regions for both cases; 
however, we found that the scaling function for the latter case is different from that on a 
regular lattice. 

2. Monte Carlo methods 

The Monte~Carlo method of TSAW is well known. When the walk moves from site j to the 
neighbouring site i, the Boltzmann factor e-gn, normalized by those of nearest-neighbour 
sites to j is taken as the probability 4-i. On a percolation cluster, the method is in principle 
similar to that on a regular lattice, except that the walk is restricted to a jump to the occupied 
neighbour sites. Thus, if the neighbouring site is empty, the probability of making a jump 
to it is assigned to be 0 and, otherwise, it is assigned according to equation (2).  

Since the asymptotic behaviour of TSAW is slow on 3D and 4D percolation clusters as we 
mentioned earlier, we should construct clusters sufficiently large to avoid size effects. (We 
found that asymptotic behaviour can be observed for N over lo4 steps.) If the underlying 
cluster is not sufficiently large, the walk would easily reach the boundaries and be reflected 
from them, causing finite-size effects which makes an accurate determination of the exponent 
U extremely difficult. However, obtaining such large clusters is not easy, particularly in high 
dimensions such as 3D and 4D. In order to reduce both the computing time and the size 
effects, we employ the periodic boundary condition. We generate a percolation cluster in a 
cell of Ld lattice sites. The largest cluster is then searched for and checked to see whether 
or not it spans along all coordinate directions and wraps around the lattice by a periodic 
boundary condition. If such a cluster is found, we assume it to be an infinite cluster, 
otherwise it is rejected and a new cluster is constructed. 

Once we find an infinite cluster, we connect all isolated clusters near the edges which are 
members of the infinite cluster by periodic boundary conditions. We then select a starting 
point on an infinite cluster and generate a single N-step walk from the point. We repeat 
this procedure over many randomly selected starting points and the walk average is carried 
out over those walks on each cluster. The final disorder average is carried out over many 
different disorder configurations. 

Our sampling technique defined here is different from that of the ‘quenched average’ 
defined for polymer chains on disordered media [17, IS]. The quenched average is often 
referred to as one-end fixed, i.e. the average should be.carried out first over all walks fmm 
one starting point on each cluster and then over many different disorder configurations. 
However, we found that the difference is irrelevant for at least TSAW. We have carried 
out simulations on infinite clusters in 3D for selected values of g, g = CO, 0.5, 0.1, 0.05 
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and 0.01, and for L = 64, using two different sampling methods. We found that the RMS 
end-to-end distances obtained were identical within statistical errors over all ranges of N .  
We believe this to be due to the correlations between two ends of chains being relatively 
weak and, after a large number of steps, the two ends are effectively uncorrelated, unlike 
the case of SAW. 

When we generate the walks, we take full advantage of the wrapping condition employed 
for periodic boundaries. If the walk reaches one edge and exits the cell, we assume it to re- 
enter the cell through the opposite edge. This type of boundary condition requires additional 
attention in two respects. First, since the probability of each step depends on the history 
of the walk, one should keep the number of visits for each site. When the walk exits and 
re-enters the cell many times making loops, then keeping the number of visits would be 
very much more complex since it is difficult to work out whether the loops are true ones 
or artificial ones caused by the periodic boundary condition. Second, if the linear size of 
the walk is too large compared with the size of the cell, L, walks may pass through several 
replicated cells. In such a case, walks will eventually cross over to Euclidean lattices, thus, 
recovering the full lanice value of v. 

Both of these problems, however, can be resolved if the size of the cell is sufficiently 
large so that the spanning distances of walks along each coordinate direction are always 
smaller than L. We have thus measured the spanning length of each walk along each 
coordinate direction and determined the number of steps NmOx at which the spanning length 
exceeds L for the first time. Our data for N up to the smallest value of N,,’s are free of 
such problems as discussed. However, even for longer walks, since not all of them cause 
the problem, we did not discard the data beyond Nmaz. Our estimates of U, however, were 
obtained from the data up to Nmaz steps. 

Another great advantage for the model of TSAW is that the walk averages seem to show 
relatively small fluctuations over different clusters, and thus, we have no need to generate a 
large number of different clusters. We found that the average over several clusters already 
yielded fairly consistent asymptotic behaviour. This behaviour is a characteristic of TSAW 
(and also of RW) and is different from that of SAW on a diluted lattice, where a large number 
of disordered configuration was essential to observe the correct asymptotic behaviour. 

S B t ee  and K Y Woo 

3. Results and discussions 

We have carried out simulations for TSAW on an infinite cluster of percolation in both 3D and 
4D and calculated the RMS end-to-end distances. The effective exponent UN was calculated 
from the Monte Carlo data, and the Flay exponent v was obtained by extrapolating UN in 
the limit of N + 00. The UN can be defined in several different ways, similarly to the SAW 
on diluted lattices, among which the most effective and less fluctuative one is given as [19] 

We have calculated the walk average over 2.5 x IO4 walks on a given disorder and 
the disorder average over 20 clusters. (We have added more clusters in the average for 
a selected value of g, but we found that 20 clusters are just enough to observe correct 
asymptotic behaviour for this particular problem.) We repeated calculations for various 
values of g to estimate the convergent exponent. 
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3.1. Flory exponent 

Since an infinite cluster does not exist below pc ,  the RMS distance of TSAW does not exceed 
the mean size of the cluster and thus saturates as 

RNC(R,(S) as N + o o  (8) 
where R,(S) is the saturation value of RN on a cluster of size S and diverges as 
R, - ( p ,  - p)- -Y"~- / (~"~"~-f l )  ( y ,  ,4 and u p ~ c  being the exponents for mean cluster size, 
order parameter, and correlation length, respectively) as p + p c .  The Flory exponent is 
thus trivial for p e pc  and therefore, we focus our study for p > pe .  

In 3D, we have generated percolation clusters on a simple cubic (sc) lattice of 
linear size L.  We have chosen p = 0.312 as p c ,  where the best known value is 
pc  = 0.3117 3~ 0.0003 [20] and carried out simulations for various values of g, ranging 
o<g<oo.  

In order to see if there is any size effect, we have repeated simulations for various 
values of L,  L = 64, 80, 100, 120. The finite-size effect, if it exists, is expected to be 
more pronounced on the data for larger values of g since the walks for larger g probe wider 
regions of underlying fractal than the walks of smaller g can probe. The effective exponent 
UN of TSAW for relatively large g is expected to be similar to that of SAW for small N 
and, as N increases, it should decrease towards the value of U for TSAW on a percolation 
cluster. However, since the finite-size effect yields TSAW to cross over to a Euclidean lattice 
behaviour, a sharp upturn in VN is expected if the size effect exists. Such a behaviour was 
indeed observed in our data for L = 64 and, as we increased the size of system, it became 
less appreciable, as expected. We found that L = 120 is sufficient to eliminate any size 
effect on the data up to lo4 steps. We thus present our data for L = 120 in what follows. 

Plotted in figure 1 is our Monte Carlo data, in comparison with those on a regular 
lattice. Two important consequences should be pointed out. First, data for g =- 0 yield 
the critical behaviour different from those of g = 0. This is clear from the figure, where 
the asymptotic slopes of the plots for g = 0.1 and 00 are considerably larger than the 

10' 

10' 

Figure 1. Double logarithmic plot of 
the mem square end-toad distances 
of TEAW. Data are, from the top. for 

for g = 00.0.1 and 0 on a percolation 
cluster at p c .  

g = O0,O.l On a regular SC lattice and 
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corresponding data for g = 0, indicating that the self-avoidance enhances the RMS distances 
even on a percolation cluster. Second, the asymptotic slope for TSAW (for g > 0) on a 
percolation cluster is smaller than that on a regular lattice. This implies that the Flory 
exponent U decreases considerably as the concentration of disordered sites becomes critical. 
Similar behaviour was also observed in the previous work in 2D 1121 and is clearly different 
from that of SAW, where the Flory exponent was claimed to increase at p e  121,181. 

S B Lee and K Y Woo 

1 ..... I... * 
*.I ...... . I . . . . . . .  - g=o.o 

0.25 I I I J 
0,000 0,001 0.002 0.003 0.004 0.005 

1/N 

Figure 2. The effective exponent UN as a function of N for TSAW on a 3~ percolation cluster 
at pc.  The errors were estimated from the five batches of data, each of which was avenged 
over four disorder configurations. 

The Flory exponent was estimated from the plot of VN against N-‘ . For TSAW on a 
regular lattice for various g’s, g = 0.005, 0.02, 0.1, 0.5, and CO, data converge directly 
to the mean-field value of i, as expected from the usual critical phenomena above dc (not 
shown). On a percolation cluster at pc,  data are plotted in figure 2. For g = 0, i.e. for RW 
(TSAW for g = 0 corresponds to ‘myopic ant’ model [22] in the terminology of the ‘ant 
in the labyrinth’ [23]) UN is expected to converge onto the value WRW = ds/2df 2: 0.26 
(d, = 1.33 [24] and d f  = 2.52 [251) as N -+ 00; however, as can be seen from the plot, 
our data appear to show slightly larger values up to 20 000 steps. This might be due to the 
fact that the RMS distance of RW on a critical percolation cluster exhibits unusually large 
correction terms, unlike the case in low dimensions. In order to confirm this, we assume 
the mean square end-to-end distance of the form 

RN - - A N ~ ” ( I  + B N - ~ + c N - ’  +...) 

VN = v f a N - “  +bN-’ f . . .. 

(9) 

(10) 

then, the effective exponent defined in equation (7) becomes 

From this, it is clear that if A < 1 a naive extrapolation versus N-’ gives wrong results. In 
order to estimate the exponent U, we have chosen A as a parameter and plotted UN versus 
N - A .  The best linear fit was obtained for a A of about 0.22, and, for this, the exponent 
v was estimated to be v 2 0.26. Figure 3 shows the best fit of equation (10); the inset 
shows the linear fitting of U N  asainst N - A .  (However, detailed knowledge for RW requires 
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I2 
-1 N 

Figure 3. The correction-to-scaling fit of (IO) for [he effeclive exponent VN of TSAW for g = 0 
(i.e. RW) against N-’, using A = 0.22, n = 0.133 and Y = 0.26. The inset is the linear 
repssion fitting of UN Y ~ ~ S U S  N - A ;  A sz 0.22 shows the best result. 

more careful analysis using both blind and myopic ant models, and we will leave this for a 
separate paper.) 

For g =- 0, all data for g = 0.05, 0.1 and 0.2 appear to converge onto a single value on 
the ordinate and we obtain from the plot 

3D = 0.330 0.005 VP, 

which is within 4% of the predictions by the known Flow formulae. For g = 0.01, on 
the other hand, it is rather unclear that VN would also converge to the same value on the 
ordinate. We, however, believe that it would do so according to the universality. Since 
for sufficiently small g, such as g < 0.01, TSAW behaves like RW for the first number of 
steps, the VN is expected to be similar to that of Rw for small N .  (Note that we plotted data 
for N > 200 in figure 2.) However, according to the universality, TSAW for all g > 0 is 
expected to show the same asymptotic behaviour. The upturn in figure 2 appears to validate 
such a RW-to-TSAW cross-over, and  the detailed cross-over behaviour shall be discussed in 
the subsequent subsection. 

We have also carried out similar simulations in 4D. Although 4D is not a physical 
dimension, TSAW on an infinite percolation cluster at pc is still an interesting problem. 

Simulations were repeated for L = 30, 40 and 50, and we found that the data for 
L = 50 are free of the size effect up to IO4 steps. The asymptotic behaviour of TSAW on a 
4D percolation cluster is basically similar to that in 30. Shown in figure 4 are the effective 
exponents VN for various values of g on a cluster generated at (or near) p e .  While the 
known value of pc  is about 0.197 [25], we have chosen pc = 0.1988 for all g’s except for 
g = 0.02 where pc = 0.1995 was selected. Since an infinite cluster is known to exhibit a 
fractal nature in the region r < 6 (- Ip - p C l - ’ h ) ,  TSAW within this region is expected 
to show the same critical behaviour even though p is slightly away from pc .  This can~ be 
confimitd from our data in figure 4, where data for all g-values converge onto the same 
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0.30 

9 

0.25 
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........... 
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"i&d.dz' ..... I . 
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0,000 0.001 0.002 0.003 0.004 0.005 

1/N 

Figure 4. As of figure 2 for TSAW on a 4D percolation cluster at pc 

value in the thermodynamic l i t  of N + 00. 

For g = 0, the effective exponent again appears to show corrections, as in 30. While 
the expected value of URW is about 0.22 from the scaling law um = d,/2df (d, N 1.33 [24] 
and d, 3.05 [26]), our data up to 20000 steps would yield about 0.24 if no corrections 
are assumed. However, the analysis of these data in a similar way to 3D yielded A N 0.19 
and v = 0.22. 

For g > 0, data for various g's appear to converge onto the same value on the ordinate. 
Estimated from the plot is 

4D = 0.283 & 0.005 UP? 

which is considerably larger than the Rw value, but smaller than the mean-field value on a 
regular lattice, 4. Again, this is close to all the predictions by the Flory formulae but agrees 
better with equations (4) and (5). 

So far we have discussed the TSAW on a percolation cluster in 3D and 4D. The estimates of 
v were found to be very close to the predictions of the known Flory formulae. With the work 
of TSAW on percolation clusters alone, however, it is not possible to work out whether such 
agreement is due to the excellency of the approximations made in deriving such formulae, 
or whether it is merely fortuitous and appropriate for TSAW only on a percolation cluster. In 
order to see if those formulae are good on other random fractals as well, we have studied 
TSAW on a 3D DLA cluster. The 3D DLA cluster has the fractal dimension close to that of 
3D infinite percolation cluster but the geometrical structures are known to be very different. 
While percolation clusters possess many loops, DLA clusters instead have many branches. 
Since these branches grow as the clusters grow, it is rather difficult to generate TSAW on it if 
the clusters are not sufficiently large. In order to reduce the size effect we have chosen the 
diameters of DLA 150,180 and 220 and generated TSAW from the seed sites. We found that 
if the number of steps is too large compared with the size of DLA, the effective exponent 
decreases sharply near the end of walks. This is due to the size effect being caused when 
TSAW reaches the growing boundary of DLA. We found, however, that if the number of steps 
are not very large, the VN shows a convergent behaviour independent of the size of DLA and 
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0.40 

JL 

0.35 

0.30 
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I I I 
IO 0.002 0.004 0.006 0.008 0.010 
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Figure 5. As of figure 2~fo r  TSAW on a DLA cluster in 3D. The full symbols Xe for the R M S  

end- toad  distances and the open symbols for the radii of gyration. 

Table 1. Summary of predictions from various Rory formulae for DAW in comparison with the 
Monte Carlo estimates obtained in the present work. 

JD infinite cluster d~ infinite cluster 3 0  DLA cluster 
.~ 

dF 2.51 3.05 2.50 
d 1.8Za 1.881 2.4jb 
4 1.33 1.32 1.30b - 1.35< 
Equation (3) 0.318 0.261 0.32 
Equation (4) 0.336 0.278 0.35 
Equation (5) 0.339 0.284 0.34 
This work 0.330 f 0.005 0.283 i 0.005 0.37 f 0.01 

Reference [261. 
Reference [24] and references therein. 
Reference [271. 

of the g-values for selected values of g, as shown in figure 5. Estimated from the figure is 

This value deviates slightly from the predictions of the Flory formulae, u;&w cz 0.35 and 
U&., cz 0.34 from equations (4) and (5), respectively, obtained using the known values 
of d f ,  d, and 2 [24], compaed to the previous two cases, but is still close within the 
statistical errors. We thus conclude that the known Flory formulae appear to yield fairly 
good approximations on other random fractals, as well as on percolation clusters, for at 
least equations (4) and (5). We summarize our results in table 1, in comparison with the 
predictions by Flory formulae. 

3.2. Crossover scaling of RMS distances 

An infinite percolation cluster is known to exhibit a fractal nature in the region r < t ,  while 
for r z ( it exhibits a Euclidean lattice structure. Thus one can expect that the asymptotic 

uF& = 0.37 f 0.01 . 



1014 S B Lee and K Y Woo 

-5  -2 1 

log,,(Nlp -polN) 

Figure 6. Fractal-to-Euclidean crass-over scaling function of RUS end-toend distances f o r r j A W  
on a 3 0  percolation cluster. The dashed lines are for two asymptotic limits expected by theory 

behaviour of TSAW for RN < is different from that for RN > f .  Since the correlation 
length 5 diverges as p + pc,  the TSAW must cross over from fractal behaviour to Euclidean 
behaviour as both N and p increase. This kind of cross-over is generally expected near pc 
and has already been discussed for SAW on diluted lattices [28,29]. 

From the usual scaling assumption, the cross-over scaling function can be written as 

RN = N”pc f (Nip - p , l ~ ‘ ” ~ ~ )  (11) 

where vpc is the Floly exponent of TSAW at pc. In the two extreme limits of scaling variable 
x = Nlp - p , l ” ~ + ~ / ” ~ = ,  the scaling function f (x) satisfies 

Assuming that TSAW crosses over from fractal to Euclidean lattices, U, can be considered as 
the regular lattice value. However, if TSAW crosses over from pc to a new critical behaviour 
controlled by a new fixed point at p* between pc and 1, as suggested for SAW on diluted 
lattices [18], u1 would be the exponent at p*. 

We have studied scaling analyses for both 3D and 4D. However, since the scaling 
argument is similar in both cases, we will present 3D results only. We fixed g = 0.1 
and generated walks for various values of p near pc,  0.312 6 p 6 0.40. Shown in figure 6 
is the scaling function obtained using up.= Y 0.9 [25] and upc = 0.328. For ,small N for 
each p-value data do not collapse. This is because the walk does not reach the asymptotic 
region if N is relatively small. (As the convergence behaviour of TSAW is relatively slow 
as we mentioned before, our data indicated that N should be over IO3 steps.) However, as 
is clear from the figure, data for sufficiently large N for each p appear to converge onto a 
single curve. Although the overlapping of the data for different p’s was not observable for 
small x, one can reasonably expect from the plot that they would overlap if the longer walks 
are obtained. This suggests that data would indeed scale in  the asymptotic limit of N + 03. 
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Figure 7. RW-to-ISAW C ~ O S S - O V ~  scalinp function Of ISAW on B SC lanice (above) and On a 
percolation cluster at pc  (below). The left ordinate is for the data on a sc lattice and the right 
ordinare for the dam on a infinite percolation cluster at pc.  

Data for both x << 1 and x >> 1 show correct limits. For x << 1 and N >> 1, the plot 
is flat as expected in equation (12), indicating our value of upc Y 0.33 to be correct. For 
x >> 1. the slope of the plot is about 0.17, which is close to the expected value of VI - upc 
if VI = 4. This indicates that TSAW crosses over from fractal at p c  directly to the full lattice 
behaviour as x increases, unlike the case of SAW where the cross-over is expected from pc 
to p* between pe  and 1 (but this is still inconclusive, as far as we are aware). From this, we 
conclude that no fixed point between pc  and 1 exists for TSAW and, therefore, the critical 
behaviour of TSAW on a percolation cluster is clearly different from that of SAW. 

The cross-over scaling can also be considered as the parameter g varies. When g << 1, 
since the walk can visit the same lattice site many times, the TSAW behaves like RW if 
N is not large enough. However, as N increases, all walks for any g > 0 are expected 
eventually to cross over to TSAW. Therefore, one can expect the RW-to-TSAW cross-over as 
both N and g increase. 

Such a cross-over was previously discussed in one dimension and the scaling function 
was suggested as [5] 

g R N  = '$(Z)Z*" (13) 
with the scaling variable z = gN'Iz and @ ( z )  being of the form 

$ ( z )  = 1 + alz +a*z* + ... . (14) 

We have studied similar scaling in 3D. In figure 7 we show plots of scaling functions 
for TSAW on an SC lattice (above) and on a percolation cluster at pc (below). For TSAW on 
an sc lattice, data for the scaling function in equation (13) for various values of g ,  plotted 
against z on a double logarithmic scale, collapse onto a single straight line of slope 1. 
This implies that the scaling relation for higher dimensions is also similar to that in one 
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dimension, although the scaling function might be different. The straightness of the plot is 
obvious since the critical behaviour of TSAW is identical to that of RW on a regular lattice, 
as expected above d,. and thus no cross-over region between TSAW and RW exists. On the 
other hand, for TSAW on a percolation cluster, the result is different. We found that the 
scaling function in equation (13) is no longer valid for TSAW on a percolation cluster. The 
lower plot in figure 7 is the data for g1/2RN against z, as specified on the right ordinate 
(not as in equation (13)). For all g’s, data for the first 500 steps were discarded in the plot 
because we believe that they were not in the asymptotic scaling region. The Monte Carlo 
data show fairly good data collapsing for all g’s. 

The scaling function plotted was found merely by numerical investigation and was not 
predicted before. The origin of such variation in scaling function might be due to the 
fact that the self-avoidance constrainhffects the RMS distances much more for TSAW on a 
percolation cluster than on a regular lattice. This can be supported from the plot in figure 1, 
where the difference between the data for g = 0.1 and g = CO are more pronounced on a 
percolation cluster than on a regular lattice. (Note that multiplying g1/2 (instead of g) on 
RN for each case reduces this difference). 

The RW-to-TSAW cross-over is evident from the plot. The slope for z > 1 is about 0.66 
which is twice our estimate up+ as expected. On the other hand, the slope for z << 1 is 
about 0.55, which is slightly larger than the expected value 2 u ~ w  Y 0.52. We believe this 
is a reflection of the fact that the convergence behaviour of RW on 3D and 4D percolation 
clusters are relatively slow and the RMS distance might have strong non-analytic correction 
terms, as we discussed earlier. This could be supported since half of the slope is just the 
value we could obtain by a simple eyeball extrapolation of VN for g = 0 in figure 2. 

We have also studied the same scaling analysis in 4D and found that results are 
qualitatively similar to those in 3D. In both dimensions, data exhibited clear RW-IO-TSAW 
cross-over as z increases. 

S B Lee and K Y Woo 

4. Summary 

We studied by way of Monte Carlo simulations the critical behaviour of TSAW on fractal 
lattices of fractal dimension larger than the upper marginal dimension of TSAW. We estimated 
the Flory exponent for TSAW on infinite percolation clusters in 3D and 4D and on a DLA cluster 
in 3D. We found, as results, that the upper marginal dimension d, = 2 of TSAW does not 
have any specific role on fractal lattices, and the Flory exponent was found to be generally 
smaller than that on a regular lattice. In addition, all of our estimates of v were in good 
agreement with the predictions by Bouchaud and Georges and by one of the present authors. 
In particular, that of the latter, although simple in its form, appears to be just as good as the 
former, and it can describe fairly well the critical behaviour of TSAW on any fractal lattices. 

We have also studied the cross-oyer scaling of TSAW. We found that the fractal-to- 
Euclidean cross-over scaling does indeed hold for our estimate of vpc in the appropriate 
scaling region: however, we found that the scaling region is rather narrow, in the sense that 
data for relatively small N ( N  < lo3) deviated from the asymptotic curve. 

We have also studied the RW-to-TSAW cross-over scaling for TSAW both on an ordinary 
sc lattice and on a critical percolation cluster. For both cases, data exhibited fairly good 
collapsing with valid limiting slopes in the two extreme limits. On a percolation cluster, 
RW-to-TSAW cross-over scaling was evident, but the scaling relation appears to be modified 
in an appropriate way. 
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